Почка: структура, функции. Нефрон – как морфофункциональная единица почки, его строение. Функции
Почка является паренхиматозным зональным органом. Снаружи она покрыта капсулой из плотной волокнистой соединительной ткани и серозной оболочки. От капсулы отходят прослойки рыхлой волокнистой неоформленной соединительной ткани, по которым идут сосуды. Почка состоит из коркового и мозгового вещества. Граница между ними неровная: корковое вещество проникает в мозговое в виде колонок Бертини
, а мозговое в корковоев виде мозговых
лучей Феррейна.
Корковое вещество
занимает наружную, поверхностную часть почки и мозговыми лучами Феррейна разделяется на отдельные участки. Участки коркового вещества своей нижней частью внедряются между основаниями мозговых пирамид в мозговое вещество в виде колонок Бертини, отделяя пирамиды друг от друга.
Мозговое вещество
образовано мозговыми пирамидами. Их широкие основания повернуты в сторону коркового вещества, вершины пирамид называются сосочками. Они обращены к малым чашечкам, которые далее продолжаются в большие чашечки и затем в почечную лоханку.
Функции почек:
· мочеобразование и мочевыделение, заключается в образовании мочи путем фильтрации плазмы крови и реабсорбции обратно в кровь полезных для организма продуктов обмена. С образующейся в почках мочой выделяются конечные продукты азотистого обмена и ксенобиотики: токсические, лекарственные вещества и другие;
· поддержание кислотно-щелочного гомеостаза;
· регуляция водно-солевого обмена;
· регуляция артериального давления;
· эндокринная функция и синтез биологически активных веществ — выработка ренина, эритропоэтина, эритрогенина, простагландинов, биогенных аминов, витамина D3 (кальцитрола), калликреина, ряда интерлейкинов;
· участие обмене веществ, в первую очередь, в обмене белков и углеводов;
· участие в работе свертывающей противосвертывающей системы заключающейся в выработке урокиназы (активатора плазминогена, фактора фибринолиза), фактора активации тромбоцитов.
Структурно-функциональной единицей почки является нефрон.
Он состоит из капсулы и переходящих друг в друга канальцевпроксимальных извитого и прямого, дистальных извитого и прямого. В каждой почке около 2 млн нефронов.
В нефроне выделяют:
· капсулу (вместе с сосудистым клубочком формирует почечное тельце Мальпиги);
· проксимальный извитой отдел;
· проксимальный прямой отдел;
· дистальный извитой отдел;
· дистальный прямой отдел.
Дистальные извитые канальцы впадают в собирательные трубочки, которые берут начало в мозговых лучах в корковом веществе, продолжаются в мозговое вещество и на вершине пирамид открываются в сосочковые каналы. Указанные выше отделы нефронов располагаются как в мозговом, так и в корковом веществе.
В состав коркового вещества входят следующие структуры:
· почечные тельца Мальпиги;
· проксимальные извитые канальцы;
· дистальные извитые канальцы.
В корковом веществе залегают также компоненты юкстагломерулярного аппарата
. В мозговом веществе находятся: проксимальные прямые канальцы, тонкие канальцы, дистальные прямые канальцы, а также в мозговом веществе находятся собирательные трубочки. У корковых нефронов в корковом веществе находятся почечное тельце, проксимальный и дистальный отделы, и только тонкий отдел и восходящая часть петли лежат в мозговом слое.
Гистология органов ротовой полости. Большие слюнные железы: развитие, строение, гистофизиология. Особенности структуры белковых, слизистых и смешанных концевых отделов. Эндокринная функция, кровоснабжение и иннервация слюнных желез. Возрастные изменения и регенерация слюнных желез.
К органам ротовой полости относятся губы, щеки, десны, зубы, язык, твердое и мягкое небо, миндалины. В полость рта открываются выводные протоки больших слюнных желез.
РАЗВИТИЕ.Слюнные железы развиваются из 2-х источников : эктодермы( концевые отделы и выводные протоки) и мезенхимы( капсула, строма и сосуды). Тип концевых отделов желез меняется по мере их созревания, причем противоположным образов:
– в околоушных железах слизисты отделы заменяются на серозные,
– а в остальных двух парах желез серозные – на смешанные и слизистые отделы.
СТРОМА.Снаружи железы покрыты плотной соединительнотканной капсулой. От нее отходят прослойки, которые разделяют железы на дольки и содержат междольковые протоки и кровеносные сосуды. Слюнные железы являются сложными, т.к. у них разветвлены и выводные протоки и концевые отделы.
1. Виды концевых отделов. Концевые отделы (илиацинусы)
в рассматриваемых железах
по природе
своих
экзокриноцитов
, а следовательно, и
по характеру секрета
подразделяются на три типа.
а) Белковые (серозные)
отделы содержат только
сероциты
(белковые клетки), продуцирующие белковый секрет.
б) Слизистые (мукозные)
отделы содержат только
мукоциты
(слизистые клетки), вырабатывающие слизистый секрет.
в)
А
смешанные
концевые отделы содержат и сероциты, и мукоциты, отчего производят белково-слизистый секрет.
2. Распределение концевых отделов по железам таково:
а) в околоушных железах
– имеются только серозные концевые отделы;
б) в подчелюстных железах
— серозные и смешанные отделы;
в) в подъязычных железах —
все три вида отделов: смешанные, слизистые и серозные, причем преобладают смешанные отделы и в них содержатся серомукоциты клетки с промежуточными свойствами).
Во всех видах концевых отделов содержатся, кроме экзокриноцитов, также миоэпителиальные клетки. Их название связано с тем, что они, с одной стороны, имеют эпителиальное происхождение
, а с другой стороны, обладают
сократительной способностью.
За счет сократительной активности миоэпителиальные клетки
облегчают выделение секрета
из концевых отделов.
Выводные протоки слюнных
Виды протоков
а) Среди выводных протоков различают, внутридольковые
— вставочные и исчерченные,
междольковые
и
проток
(или протоки)
железы.
б) Причем вставочные протоки имеются лишь в случае серозных концевых отделов,
непосредственно от которых они и начинаются. Затем вставочные протоки переходят в исчерченные.
Функции нефрона
Нефрон обеспечивает нормальную работу всего организма, выполняя ряд важнейших функций:
- Очищает циркулирующую по сосудам кровь.
- Участвует в формировании мочи первичного и вторичного типа.
- Осуществляет возврат воды, ионов, аминокислот.
- Регулирует водный, кислотно-основной и солевой баланс в органах и системах.
- Обеспечивает поддержание артериального давления в пределах нормальных значений.
- Секретирует ряд гормонов.
Всего за 60 секунд нефроны обеих почек производят очищение примерно одного литра крови. А за пять минут происходит фильтрация всего объема крови, циркулирующей в человеческом организме.
Нефрон как структурная единица почки
В каждой почке взрослого человека насчитывается не менее 1 млн нефронов, каждый из которых способен вырабатывать мочу. Одновременно функционирует обычно около 1/3 всех нефронов, что достаточно для полноценного выполнения экскреторной и иных функций почек. Это свидетельствует о наличии существенных функциональных резервов почек. При старении отмечается постепенное снижение числа нефронов (на 1% в год после 40 лет) из-за отсутствия у них способности к регенерации. У многих людей в 80-летнем возрасте количество нефронов уменьшается на 40% по сравнению с 40-летними. Однако потеря такого большого числа нефронов не является угрозой для жизни, поскольку оставшаяся их часть может полноценно выполнять выделительную и другие функции почек. В то же время повреждение более 70% нефронов от их общего количества при заболеваниях почек может быть причиной развития хронической почечной недостаточности.
Зачем нам так много нефронов
Нефрон почки имеет очень небольшие размеры, но количество их велико, это позволяет почкам качественно справляться со своими задачами даже в трудных условиях. Именно благодаря такой особенности человек может совершенно нормально жить при потере одной почки.
Современные исследования показывают, что непосредственно заняты «делом» лишь 35% единиц, остальные «отдыхают». Зачем организму такой резерв?
Во-первых, может возникнуть экстренная ситуация, которая приведет к гибели части единиц. Тогда их функции возьмут на себя оставшиеся структуры. Такая ситуация возможна при заболеваниях или травмах.
Во-вторых, их потеря происходит у нас постоянно. С возрастом часть из них погибает в силу старения. До 40 лет гибели нефронов у человека со здоровыми почками не происходит. Далее около 1% этих структурных единиц мы теряем каждый год. Регенерироваться они не могут, получается, что к 80 годам даже при благоприятном состоянии здоровья в человеческом организме их функционирует примерно лишь 60%. Эти цифры не критичны, и позволяют почкам справляться со своими функциями, в одних случаях полностью, в других могут быть небольшие отклонения. Угроза почечной недостаточности подстерегает нас, когда происходит потеря 75% или более. Оставшегося количества недостаточно для обеспечения нормальной фильтрации крови.
К таким серьезным потерям может привести алкоголизм, острые и хронические инфекции, травмы спины или живота, вызывающие повреждение почек.
Общая информация
Так именуется одна из функциональных единиц почки (один из её элементов). Нефронов в органе не менее 1 миллиона, и вместе они образуют слаженно действующую систему. Благодаря своему строению нефроны позволяют осуществлять фильтрацию крови.
Почему – крови, ведь общеизвестно, что почки производят мочу? Мочу они производят именно из крови, куда органы, выбрав из неё всё им необходимое, оправляют вещества:
- либо в данный момент совершенно организму не требующиеся;
- либо их излишки;
- могущие стать для него опасными при продолжении их пребывания в крови.
Чтобы сбалансировать состав и свойства крови, требуется удаление из неё ненужных компонентов: излишков воды и солей, токсинов, низкомолекулярных белков.
Петля Генле
Структурно-функциональная единица почки имеет в составе тонкие отделы, также называемые петлей Генле. Она состоит из 2 сегментов: нисходящего тонкого и восходящего толстого. Стенка нисходящего участка диаметром 15 мкм образована плоским эпителием со множественными пиноцитозными пузырьками, а восходящей — кубическим. Функциональное значение канальцев нефрона петли Генле охватывает ретроградное перемещение воды в нисходящей части колена и ее пассивный возврат в тонком поднимающемся сегменте, обратный захват ионов Na, Cl и K в толстом отрезке восходящего сгиба. В капиллярах клубочков этого сегмента молярность мочи повышается.
Строение нефрона
Открытие метода УЗИ позволило выяснить: способностью к сокращениям обладают не только сердце – все органы: печень, почки и даже мозг.
Почки сжимаются и расслабляются в определённом ритме – их размеры и объём то уменьшаются, то возрастают. При этом возникает то сжатие, то растяжение проходящих в недрах органа артерий. Уровень давления в них также меняется: при расслаблении почки он снижается, при сокращении – возрастает, делая возможной работу нефрона.
При возрастании давления в артерии срабатывает система естественных полупроницаемых мембран в структуре почки – и ненужные организму вещества, продавившись через них, удаляются из кровеносного русла. Они попадают в образования, являющиеся начальными участками мочевыводящих путей.
На определённых их отрезках есть участки, где происходит обратное всасывание (возвращение) воды и части солей в кровеносное русло.
В нефроне различают:
- зону первичной фильтрации (почечное тельце, состоящее из почечного клубочка, находящегося в капсуле Шумлянского-Боумена);
- зону реабсорбции (капиллярную сеть на уровне начальных участков первичных мочеотводящих путей – почечных канальцев).
Почечный клубочек
Так называется действительно похожая на рыхлый клубок сеть капилляров, на которые здесь распадается приносящая (другое название: подводящая) артериола.
Такое строение обеспечивает максимальную площадь контакта стенок капилляров с интимно (очень близко) прилегающей к ним избирательно проницаемой трёхслойной мембраной, образующей внутреннюю стенку боуменовской капсулы.
Толщина стенок капилляров образована всего одним слоем эндотелиальных клеток с тонким цитоплазматическим слоем, в котором имеются фенестры (пустотные структуры), обеспечивающие транспорт веществ в одном направлении – из просвета капилляра в полость капсулы почечного тельца.
В зависимости от локализации по отношению к капиллярному клубочку (гломерулюсу) они являются:
- интрагломерулярными (внутриклубочковыми);
- экстрагломерулярными (внеклубочковыми).
Пройдя по капиллярным петлям и освободившись в них от шлаков и излишков, кровь собирается в отводящую артерию. Та в свою очередь образует ещё одну сеть капилляров, оплетающую почечные канальцы на их извитых участках, из которых кровь собирается в отводящую вену и таким образом возвращается в кровеносное русло почки.
Капсула Боумена-Шумлянского
Описать строение этой структуры позволяет сравнение с общеизвестным в обиходе предметом – спринцовкой шарообразной формы. Если вдавить её дно, из неё образуется чаша с внутренней вогнутой полусферической поверхностью, которая является одновременно и самостоятельной геометрической формой, и служит продолжением наружной полусферы.
Между двумя стенками образовавшейся формы остаётся щелевидное пространство-полость, продолжающееся в носик спринцовки. Другим примером для сравнения может служить колба термоса с узкой полостью между двумя её стенками.
В капсуле Боумена-Шумлянского также существует щелевидная внутренняя полость между двумя её стенками:
- внешней, именуемой париетальной пластинкой и
- внутренней (или висцеральной пластинкой).
Более всего подоцит напоминает пень с несколькими толстыми основными корнями, от которых равномерно отходят на обе стороны корни потоньше, причём вся система корней, распластанных по поверхности, как простирается далеко от центра, так и заполняет собой почти всё пространство внутри образованного ей круга. Основные виды:
- Подоциты – это клетки гигантского размера с телами, находящимися в полости капсулы и одновременно – приподнятыми над уровнем капиллярной стенки благодаря опоре на свои корневидные отростки-цитотрабекулы.
- Цитотрабекула – это уровень первичного ветвления «ножки»-отростка (в примере с пнём – основные корни).Но есть ещё и вторичное ветвление – уровень цитоподий.
- Цитоподии (или педикулы) – это вторичные отростки с ритмично выдержанным расстоянием отхождений от цитотрабекулы («основного корня»). Благодаря одинаковости этих расстояний достигается равномерность распределения цитоподий на участках капиллярной поверхности по обе стороны от цитотрабекулы.
Выросты-цитоподии одной цитотрабекулы, заходя в промежутки между аналогичными образованиями соседней клетки, образуют фигуру, рельефом и рисунком очень напоминающую застёжку-«молнию», между отдельными «зубцами» которой остаются лишь узкие параллельные щели линейной формы, именуемые щелями фильтрации (щелевыми диафрагмами).
Благодаря такому строению подоцитов вся наружная поверхность капилляров, обращённая в полость капсулы, оказывается сплошь укрытой переплетениями цитоподий, чьи застёжки-«молнии» не позволяют продавить стенку капилляра внутрь полости капсулы, противодействуя силе кровяного давления внутри капилляра.
Почечный клубочек
Нефрон начинается капиллярным клубочком. Это — тело. Морфофункциональная единица — сеть капиллярных петель, общим числом до 20, которые окружает капсула нефрона. Кровоснабжение тело получает от приносящей артериолы. Стенка сосудов представляет собой слой эндотелиальных клеток, между которыми находятся микроскопические промежутки диаметром до 100 нм.
В капсулах выделяют внутренний и внешний эпителиальные шары. Между двумя слоями остается щелевидный промежуток — мочевое пространство, где содержится первичная моча. Она окутывает каждый сосуд и формирует цельный шар, таким образом разделяя кровь, расположенную в капиллярах, от пространств капсулы. Базальная мембрана служит поддерживающей базой.
Устроен нефрон по типу фильтра, давление в котором не постоянное, оно изменяется в зависимости от разницы ширины просветов приносящего и выносящего сосудов. Фильтрация крови в почках происходит в клубочке. Форменные элементы крови, белки, обычно не могут проходить сквозь поры капилляров, так как их диаметр значительно больше и они задерживаются базальной мембраной.
Почечные канальцы
Начавшись колбообразным утолщением (капсулой Шумлянского-Боумена в структуре нефрона), первичные мочеотводящие пути далее имеют характер трубочек диаметра, меняющегося на их протяжении, к тому же, на отдельных участках они приобретают характерно извитую форму.
Протяжённость же их такова, что одни их отрезки находятся в корковом, другие – в мозговом слое паренхимы почки. На пути жидкости от крови к первичной и вторичной моче она проходит по почечным канальцам, состоящим из:
- проксимального извитого канальца;
- петли Генле, имеющей нисходящее и восходящее колена;
- дистального извитого канальца.
Той же цели служит и наличие интердигитаций – пальцевидных вдавливаний мембран соседствующих клеток друг в друга. Активная резорбция веществ в просвет канальца является весьма энергоёмким процессом, поэтому в цитоплазме клеток канальца содержится много митохондрий.
В капилляры, оплетающие поверхность проксимального извитого канальца, производится реабсорбция:
- ионов натрия, калия, хлора, магния, кальция, водорода, карбонат-ионов;
- глюкозы;
- аминокислот;
- некоторых белков;
- мочевины;
- воды.
Классификация
Исходя из того, в каком слое находятся капсулы нефронов, выделяют такие виды:
- Корковые — капсулы нефронов находятся в корковом шаре, в состав входят клубочки малого или среднего калибра с соответствующей длиной изгибов. Их афферентная артериола короткая и широкая, а отводящая — уже.
- Юкстамедуллярные нефроны размещены в мозговой почечной ткани. Их структура представлена в виде крупных почечных телец, которые имеют относительно более длинные канальцы. Диаметры афферентной и эфферентной артериол одинаковые. Главная роль — концентрирование мочи.
- Субкапсулярные. Структуры, располагаемые непосредственно под капсулой.
В общем за 1 минуту обе почки очищают до 1,2 тыс мл крови, а за 5 минут фильтруется весь объем тела человека. Считается, что нефроны, как функциональные единицы, не способны на восстановление. Почки — нежный и ранимый орган, поэтому факторы, негативно влияющие на их работу, приводят к снижению числа активных нефронов и провоцируют развитие почечной недостаточности. Благодаря знаниям врач способен понять и выявить причины изменений в моче, а также провести коррекцию.
Типы нефронов
Поскольку почечные тельца большей части нефронов расположены в корковом слое паренхимы почки (во внешней коре), а их петли Генле небольшой длины проходят во внешнем мозговом почечном веществе наряду с большей частью кровеносных сосудов почки, их принято называть корковыми, или интракортикальными.
Прочая их доля (около 15%), с петлёй Генле большей длины, глубоко погружающейся в мозговое вещество (вплоть до достижения верхушек почечных пирамид), размещается в юкстамедуллярной коре – пограничной зоне между мозговым и корковым слоем, что позволяет именовать их юкстамедуллярными.
Менее 1% нефронов, размещающихся неглубоко в подкапсульном слое почки, называются субкапсулярными, или суперфициальными.
Что такое нефрон?
Нефрон, строение и значение которого очень важны для организма человека, является структурно-функциональной единицей внутри почки. Внутри этого структурного элемента осуществляется образование мочи, которая в дальнейшем выходит из организма с помощью соответствующих путей.
Биологи утверждают, что внутри каждой почки находится до двух миллионов таких нефронов, и каждый из них должен быть абсолютно здоров, чтобы мочеполовая система могла полностью выполнять свою функцию. В случае повреждения почки нефроны восстановить не удастся, они будут выведены вместе с новообразованной мочой.
Ультрафильтрация мочи
Способность «ножек» подоцитов к сокращению с одновременным утолщением позволяет ещё более сузить щели фильтрации, что делает процесс очистки крови, протекающей по капилляру в составе клубочка, ещё более избирательным в плане диаметра фильтруемых молекул.
Таким образом, наличие «ножек» у подоцитов увеличивает площадь их соприкосновения с капиллярной стенкой, в то время как степень их сокращения регулирует ширину щелей фильтрации.
Помимо роли чисто механического препятствия щелевые диафрагмы содержат на своих поверхностях белки, имеющие отрицательный электрический заряд, ограничивающий пропускание также отрицательно заряженных молекул белков и других химических соединений.
Строение нефронов (независимо от их локализации в паренхиме почки), призванное выполнять функцию сохранения стабильности внутренней среды организма, позволяет им выполнять свою задачу, невзирая на время суток, смену времён года и иных внешних условий, в продолжение всей жизни человека.
Собирательные трубки
Собирательная трубка, также известная как Беллиниевые протоки, не относится к нефрону, хотя и выходит из него. В состав эпителия входят светлые и темные клетки. Светлые эпителиоциты отвечают за реабсорбцию воды и участвует в образовании простагландинов. На апикальном конце светлая клетка содержит единичную ресничку, а в складчатых темных образуется соляная кислота, которая изменяет рН мочи. Собирательные трубки расположены в паренхиме почки. Эти элементы участвуют в пассивной реабсорбции воды. Функция канальцев почек — регуляция количества жидкости и натрия в организме, которые влияют на значение артериального давления.
Разновидности нефронов в почках человека
Схема строения нефрона человека различается в зависимости от типа. Различают юкстамедуллярные, интракортикальные и суперфициальные. Главная разница между ними состоит в их местоположении внутри почки, глубины канальцев и локализации клубочков, а также в размерах самих клубков. Кроме того, ученые придают значение особенностям петель и длительности различных сегментов нефрона.
Суперфициальный тип представляет собой соединение, созданное из коротких петель, а юкстамедуллярный – из длинных. Такое разнообразие, по мнению ученых, появляется в результате потребности нефронов доставать до всех частей почки, в том числе и той, которая располагается ниже корковой субстанции.
Гистофизиология нефрона
Система почечных канальцев и сосудистые клубочки специализирующихся на процессе мочеобразования, который происходит благодаря процессу клубочковой фильтрации, канальцевой реабсорбции и секреции. Фильтрация является первым этапом мочеобразования, в результате чего образуется первичная моча. Этот процесс активно идет в корковых нефронах и пассивно в навколамозкових нефронах. Фильтрация плазмы крови происходит в почечном тельце, а именно в сосудистом клубочке, благодаря высокому кровяному давлению в капиллярах, который определяет возможность прохождения значительного количества жидкого содержимого капилляров через фильтрационные щели почечного фильтрата в просвет капсулы Шумлянского-Боумера почечного тельца. Возникновение высокого гемодинамического давления в капиллярах клубочка обусловлено разницей диаметров приносящих и выносной артериол корковых нефронов. В навколомозкових нефронах диаметры приносящих и выносной артериол почти одинаковые, отсутствует высокий гемодинамический давление, в результате этого в нефронах процесс фильтрации происходит пассивно. В результате процесса фильтрации образуется 190 литров мочи в сутки.
Части нефрона
Нефрон, строение и значение которого для организма хорошо изучены, напрямую зависит от канальца, имеющегося в нем. Именно последний отвечает за постоянную функциональную работу. Все вещества, которые имеются внутри нефронов, несут ответственность за сохранность тех или иных разновидностей почечных клубков.
Внутри корковой субстанции можно найти большое количество соединительных элементов, специфических подразделений каналов, почечных клубочков. От того, правильно ли они будут размещены внутри нефрона и почки в целом, будет зависеть работа всего внутреннего органа. В первую очередь это будет влиять на равномерное распределение мочи, а уже потом на ее корректный вывод из организма.
Количество нефронов ограничено
Для нормальной жизнедеятельности достаточно приблизительно трети нефронов, имеющихся в почках. Остальные являются резервными, на случай гибели функционирующих (в результате травмы или заболевания). Восстанавливаться структурно-функциональная единица почки не может, поэтому в результате каких-либо повреждений, количество их в почках уменьшается. Со временем, в случае прогрессирования подобных процессов, может развиться почечная недостаточность, негативно влияющая на функционирование всех органов и систем.
С изобретением средств, способствующих восстановлению фильтрующих структур почки, будет решена масса проблем, возникающих в результате заболеваний, поражающих этот орган. Пока же, говорят специалисты, единственной мерой по продлению функциональной состоятельности почек является профилактика заболеваний мочевыделительной системы и своевременное комплексное лечение острых болезней, не позволяющее им перейти в хроническое состояние.
Предыдущая
АнатомияДНК определение, строение и структура молекулы, функции и свойства, формула и расшифровка, основные характеристики компонентов, синтез
Следующая
АнатомияГигиеническая обработка рук медперсонала, алгоритм по санпину, цель, правила, виды, уровни и способы обработки рук в медицине, продолжительность мытья
Анатомия нефрона
Анатомия и строение нефрона довольно сложные — каждый элемент играет определенную роль. В случае нарушения в работе даже наименьшего составляющего почки перестают нормально функционировать.
- капсула;
- клубочковая структура;
- канальцевая структура;
- петли Генле;
- собирательные трубочки.
Нефрон в почке состоит из сообщенных друг с другом сегментов. Капсула Шумлянского-Боумена, клубок мелких сосудов — это составляющие почечного тела, где проходит процесс фильтрации. Далее идут канальцы, где обратно всасываются и продуцируются вещества.
Из тельца почки начинается проксимальный участок; дальше выходят петельки, уходящие в дистальный отдел. Нефроны в развернутом виде по отдельности имеют длину около 40 мм, а если их сложить, получается примерно 100000 м.
Капсулы нефронов находятся в корковом веществе, включаются в мозговое, затем еще раз в корковое, а в конце — в собирательные структуры, которые выходят в лоханку почки, где начинаются мочеточники. По ним удаляется вторичная урина.
Капсула
Нефрон начинается из мальпигиева тела. Оно состоит из капсулы и клубка капилляров. Клетки вокруг мелких капилляров располагаются в форме шапочки — это почечное тельце, которое пропускает задержавшуюся плазму. Подоциты покрывают стенку капсулы изнутри, которая вместе с наружной формирует щелевидную полость диаметром в 100 нм.
Фенестрированные (окончатые) капилляры (составляющие клубочка) снабжаются кровью от афферентных артерий. По-другому их называют «волшебной сеткой», потому что они не играют никакой роли в газообмене. Кровь, проходящая по этой сетке, не меняет свой газовый состав. Плазма и растворившиеся вещества под воздействием кровяного давления попадают в капсулу.
Капсула нефрона накапливает инфильтрат, содержащий вредные продукты очистки плазмы крови — так формируется первичная моча. Щелевидный промежуток между слоями эпителия выполняет функцию фильтра, работающего под давлением.
Благодаря приводящим и выносящим клубочковым артериолам давление меняется. Базальная мембрана играет роль дополнительного фильтра — задерживает некоторые элементы крови. Диаметр молекул белков больше, чем поры мембраны, поэтому они не проходят.
Непрофильтрованная кровь попадает в эфферентные артериолы, переходящие в сетку из капилляров, обволакивающую канальцы. В дальнейшем в кровь поступают вещества, которые реабсорбируются в этих канальцах.
Капсула нефрона почки человека сообщается с канальцем. Следующий отдел называется проксимальным, туда далее переходит первичная урина.
Извитые канальцы
Проксимальные канальцы бывают прямыми и изогнутыми. Поверхность внутри выстилается эпителием цилиндрического и кубического типа. Щеточная кайма с ворсинками представляет собой поглощающий слой канальцев нефронов. Выборочный захват обеспечивается большой площадью проксимальных канальцев, близкой дислокацией перитубулярных сосудов и большим количеством митохондрий.
Жидкость циркулирует между клетками. Компоненты плазмы в виде биологических веществ фильтруются. В извитых канальцах нефрона вырабатываются эритропоэтин и кальцитриол. Вредные включения, попадающие в фильтрат с помощью обратного осмоса, выводятся с уриной.
Сегменты нефрона фильтруют креатинин. Количество этого белка в крови — важный показатель функциональной деятельности почек.
Петли Генле
Петля Генле захватывает часть проксимального и отрезок дистального отдела. Сначала диаметр петли не меняется, затем она сужается и пропускает ионы Na наружу, во внеклеточное пространство. За счет создания осмоса происходит всасывание H2O под давлением.
Нисходящий и восходящий протоки — это составляющие петли. Нисходящий участок диаметром 15 мкм состоит из эпителия, где расположены множественные пиноцитозные пузыри. Восходящий участок выстлан кубическим эпителием.
Петли распределены между корковой и мозговой субстанцией. В этой области вода перемещается в нисходящую часть, затем возвращается.
В начале дистальный канал прикасается к капиллярной сети в месте приводящего и выводящего сосуда. Он достаточно узкий и выстилается гладким эпителием, а снаружи — гладкая базальная мембрана. Здесь выделяется аммиак и гидроген.
Собирательные трубочки
Собирательные трубки по-другому называются «беллиниевы протоки». Их внутренняя выстилка — это светлые и темные клетки эпителия. Первые реабсорбируют воду и принимают непосредственное участие в выработке простагландинов. Хлористоводородная кислота продуцируется в темных клетках складчатого эпителия, имеет свойство изменять pH урины.
Собирательные трубочки и собирательные протоки не принадлежат к структуре нефрона, так как располагаются немного ниже, в почечной паренхиме. В этих структурных элементах происходит пассивное обратное всасывание воды. В зависимости от функциональности почек, в организме регулируется количество воды и ионов натрия, что, в свою очередь, сказывается на кровяном давлении.
Содержание
- 1 Структура и функции нефрона 1.1 Почечное тельце
- 1.2 Типы нефронов 1.2.1 Клубочек
- 1.2.2 Капсула нефрона
- 1.3.1 Проксимальный каналец 1.3.1.1 Строение проксимального канальца
- 1.3.3.1 Транспортные процессы
- 1.3.4.1 Транспортные процессы
- 1.3.5.1 Транспортные процессы
Функциональные нарушения в деятельности нефронов
Если в работе нефронов происходят сбои, то это отражается на деятельности всех органов и систем. Среди расстройств, которые образуются из-за дисфункции нефронов, можно назвать такие нарушения:
- водного и солевого равновесия;
- кислотности;
- метаболизма.
Все болезни, которые формируются на фоне нарушения транспортирующей деятельности нефронов, принято называть тубулопатиями. Среди них выделяют следующие разновидности:
- Первичные тубулопатии возникают на фоне врождённых дисфункций нефронов.
- Вторичные формы недуга возникают из-за приобретённых нарушений транспортирующей деятельности органа.
Распространёнными причинами возникновения вторичной тубулопатии является повреждение нефрона на фоне токсического поражения организма, злокачественных новообразований или отравления тяжёлыми металлами. По месту локализации все тубулопатии делятся на дистальные и проксимальные в зависимости от того, какие канальцы поражены (дистальные или проксимальные).
Как устроен нефрон?
Строение почечного нефрона является весьма сложным, до сих пор биологи всего мира бьются над попытками воссоздать его в виде искусственного образования, подходящего для пересадки. Петля появляется преимущественно из поднимающейся части, но может включать в себя еще и деликатную. Как только петля оказывается в том месте, где размещается клубок, она входит в изогнутый маленький канал.
В клетках полученного образования отсутствует ворсистая кромка, однако здесь можно найти большое количество митохондрий. Общая площадь мембраны может быть увеличена из-за многочисленных складок, которые формируются в результате образования петли внутри отдельного взятого нефрона.
Схема строения нефрона человека достаточно сложна, поскольку требует не только тщательной прорисовки, но и досконального знания предмета. Человеку, далекому от биологии, будет достаточно сложно ее изобразить. Последний участок нефрона представляет собой укороченный связующий канал, который выходит в накопительную трубку.
Канал формируется в корковой части почки, с помощью накопительных трубок он проходит сквозь «мозг» клетки. В среднем диаметр каждой оболочки составляет порядка 0,2 миллиметров, а вот максимальная длина канала нефрона, зафиксированная учеными, составляет порядка 5 сантиметров.
Строение почки. Функции и строение нефрона Что делает капсула нефрона
Нефрон является не только основной структурной, но также и функциональной единицей почки. Именно здесь проходят самые важные этапы Поэтому информация о том, как выглядит строение нефрона, и какие именно функции он выполняет, будет весьма интересной. Кроме того, особенности функционирования нефронов могут прояснить нюансы работы почечной системы
Строение нефрона: почечное тельце
Интересно, что в зрелой почке здорового человека находится от 1 до 1,3 миллиардов нефронов. Нефрон — это функциональная и структурная единица почки, которая состоит из почечного тельца и так называемой петли Генле.
Само почечное тельце состоит из мальпигиевого клубочка и капсулы Боумена — Шумлянского. Для начала стоит отметить, что клубочек на самом деле представляет собой совокупность мелких капилляров. Кровь попадает сюда через приносную артерию — здесь фильтруется плазма. Остаток крови выводится выносящей артериолой.
Капсула Боумена — Шумлянского состоит из двух листков — внутреннего и внешнего. И если внешний лист представляет собой обыкновенную ткань из то строение внутреннего листа заслуживает большего внимания. Внутренняя часть капсулы покрыта подоцитами — это клетки, которые выполняют роль дополнительного фильтра. Они пропускают глюкозу, аминокислоты и прочие вещества, но препятствуют движению больших протеиновых молекул. Таким образом, в почечном тельце образуется первичная моча, которая отличается от лишь отсутствием крупных молекул.
Нефрон: строение проксимального канальца и петли Генле
Проксимальный каналец представляет собой образование, которое соединяет почечное тельце и петлю Генле. Внутри каналец имеет ворсинки, которые увеличивают общую площадь внутреннего просвета, тем самым увеличивая показатели реабсорбции.
Проксимальный каналец плавно переходит в нисходящую часть петли Генле, которая характеризируется небольшим диаметром. Петля опускается в мозговой слой, где огибает собственную ось на 180 градусов и поднимается вверх — здесь начинается восходящая часть петли Генле, которая имеет гораздо большие размеры и, соответственно, диаметр. Восходящая петля поднимается примерно до уровня клубочка.
Строение нефрона: дистальные канальцы
Восходящая часть петли Генле в корковом веществе переходит в так называемый дистальный извилистый каналец. Он соприкасается с клубочком и контактирует с приносной и выносной артериолами. Здесь осуществляется конечная абсорбция полезных веществ. Дистальный каналец переходит в конечный отдел нефрона, который в свою очередь впадает в собирательную трубку, несущую жидкость в
Классификация нефронов
В зависимости от места расположения принято выделять три основных типа нефронов:
- кортикальные нефроны составляют примерно 85% от количества всех структурных единиц в почке. Как правило, они расположены во внешней коре почки, о чем, собственно, и свидетельствует их название. Строение нефрона этого типа немного отличается — петля Генле здесь небольшая;
- юкстамедуллярные нефроны — такие структуры находятся как раз между мозговым и корковым слоем, имеют длинные петли Генле, которые глубоко проникают в мозговой слой, иногда даже достигая пирамид;
- субкапсулярные нефроны — структуры, которые расположены непосредственно под капсулой.
Можно заметить, что строение нефрона полностью соответствует его функциям.
Нефрон
— это функциональная единица почки, в которой происходит фильтрация крови и выработка мочи. Он состоит из клубочка, где фильтруется кровь, и извитых канальцев, где завершается образование мочи. Почечное тельце состоит из почечного клубочка, в котором переплетены кровеносные сосуды, окруженного двойной мембраной в форме воронки, — такой почечный клубочек называется капсулой Боумена — она продолжается почечным канальцем.
В клубочке находятся ответвления сосудов, идущих от приносящей артерии, которая несет кровь к почечным тельцам. Затем эти ответвления объединяются, образуя выносящую артериолу, в которой течет уже очищенная кровь. Между двумя слоями капсулы Боумена, окружающей клубочек, остается маленький просвет — мочевое пространство, в котором находится первичная моча. Продолжением капсулы Боумена является почечный каналец — проток, состоящий из сегментов различной формы и размера, окруженный кровеносными сосудами, в котором происходит очищение первичной мочи и образуется вторичная моча.
Итак, исходя из сказанного выше попытаемся более точно описать нефрон почки
по рисункам, расположенным ниже справа от текста.
Рис. 1. Нефрон — основная функциональная единица почки, в которой выделяют следующие части:
почечное тельце
, представленное клубочком (К), окруженным капсулой Боумена (КБ);
почечный каналец
, состоящий из проксимального (ПК) канальца (серого цвета), тонкого сегмента (ТС) и дистального (ДК) канальца (белого цвета).
Проксимальный каналец подразделяется на проксимальный извитой (ПИК) и проксимальный прямой (НИК) канальцы. В корковом веществе проксимальные канальцы образуют плотно сгруппированные петли вокруг почечных телец, а затем проникают в мозговые лучи и продолжаются в мозговое вещество. В его глубине проксимальный мозговой каналец резко сужается, от этой точки начинается тонкий сегмент (ТС) почечного канальца. Тонкий сегмент опускается глубже в мозговое вещество, при этом различные сегменты проникают на различную глубину, затем поворачивает, образуя шпилькообразную петлю, и возвращается в кору, резко переходя в дистальный прямой каналец (ДПК). Из мозгового вещества этот каналец проходит в мозговом луче, затем покидает его и входит в корковый лабиринт в виде дистального извитого канальца (ДИК), где он формирует рыхло сгруппированные петли вокруг почечного тельца: в этом участке эпителий канальца трансформируется в так называемое плотное пятно (см. головку стрелки) юкстагломерулярного аппарата.
Проксимальные и дистальные прямые трубочки и тонкий сегмент формируют очень характерную структуру
нефрона почки
—
петлю Генле
. Она состоит из толстого нисходящего участка (т. е. проксимального прямого канальца), тонкого нисходящего участка (т. е. нисходящей части тонкого сегмента), тонкого восходящего участка (т. е. восходящей части тонкого сегмента) и толстого восходящего участка.
Петли Генле
проникают на различную глубину в мозговое вещество, от этого зависит деление нефронов на корковые и юкстамедуллярные.
В почке насчитывается около 1 млн нефронов. Если вытянуть нефрон почки
в длину, она окажется равной 2-3 см в зависимости от длины
петли Генле
.
Короткие соединительные участки (СУ) соединяют дистальные канальцы с прямыми собирательными трубочками (здесь не показаны).
Приносящая артериола (ПрА) входит в почечное тельце и делится на клубочковые капилляры, которые вместе формируют клубочек, glomerulus. Затем капилляры объединяются в выносящую артериолу (ВнА), которая затем делится на вокругканальцевую капиллярную сеть (ВКС), окружающую извитые канальцы и продолжающуюся в мозговое вещество, снабжая его кровью. Рис. 2. Эпителий проксимального канальца однослойный кубический, состоящий из клеток с центрально расположенным округлым ядром и щеточной каемкой (ЩК) на их апикальном полюсе.
Рис. 3. Эпителий тонкого сегмента (ТС) сформирован одним слоем очень плоских эпителиальных клеток с ядром, выпячивающимся в просвет канальца.
Рис. 4. Дистальный каналец также выстлан однослойным эпителием, образованным кубическими светлыми клетками, лишенными щеточной каемки. Внутренний диаметр дистального канальца тем не менее больше, чем проксимального канальца. Все канальцы окружены базалыюй мембраной (БМ).
В конце статьи хотелось бы отметить, что нефроны бывают двух видов, подробнее об этом в статье «
В каждой почке взрослого человека насчитывается не менее 1 млн нефронов, каждый из которых способен вырабатывать мочу. Одновременно функционирует обычно около 1/3 всех нефронов, что достаточно для полноценного выполнения экскреторной и иных . Это свидетельствует о наличии существенных функциональных резервов почек. При старении отмечается постепенное снижение числа нефронов
(на 1% в год после 40 лет) из-за отсутствия у них способности к регенерации. У многих людей в 80-летнем возрасте количество нефронов уменьшается на 40% по сравнению с 40-летними. Однако потеря такого большого числа нефронов не является угрозой для жизни, поскольку оставшаяся их часть может полноценно выполнять выделительную и другие функции почек. В то же время повреждение более 70% нефронов от их общего количества при заболеваниях почек может быть причиной развития хронической почечной недостаточности.
Каждый нефрон
состоит из почечного (мальпигиева) тельца, в котором происходит ультрафильтрация плазмы крови и образование первичной мочи, и системы канальцев и трубочек, в которых первичная моча превращается во вторичную и конечную (выделяющуюся в лоханку и в окружающую среду) мочу.
Рис. 1. Структурно-функциональная организация нефрона
Состав мочи при ее движении по лоханке (чашечкам, чашкам), мочеточникам, временном удержании в мочевом пузыре и по мочевыделительному каналу существенно не меняется. Таким образом, у здорового человека состав конечной мочи, выделяемой при мочеиспускании, очень близок к составу мочи, выделяемой в просвет (малых чашечек больших чашек) лоханки.
Почечное тельце
находится в корковом слое почек, является начальной частью нефрона и образовано
капиллярным клубочком
(состоящим из 30-50 переплетающихся капиллярных петель) и
капсулой Шумлянского — Боумеиа.
На разрезе капсула Шумлянского — Боумеиа имеет вид чаши, внутри которой расположен клубочек кровеносных капилляров. Эпителиальные клетки внутреннего листка капсулы (подоциты) плотно прилегают к стенке клубочковых капилляров. Наружный листок капсулы располагается на некотором расстоянии от внутреннего. В результате между ними образуется щелевидное пространство — полость капсулы Шумлянского — Боумена, в которую фильтруется плазма крови, и ее фильтрат образует первичную мочу. Из полости капсулы первичная моча переходит в просвет канальцев нефрона:
проксимальный каналец
(извитой и прямой сегменты),
петлю Генле
(нисходящий и восходящий отделы) и
дистальный каналец
(прямой и извитой сегменты). Важным структурно-функциональным элементом нефрона является
юкстагломерулярный аппарат (комплекс) почки.
Он расположен в треугольном пространстве, образованном стенками приносящей и выносящей артериол и дистальным канальцем (плотным пятном —
maculadensa),
плотно прилегающим к ним. Клетки плотного пятна обладают хемо- и меха- ночувствительностью, регулируя активность юкстагломерулярных клеток артериол, которые синтезируют ряд биологически активных веществ (ренин, эритропоэтин и др.). Извитые сегменты проксимального и дистального канальцев находятся в корковом веществе почки, а петля Генле — в мозговом.
Из извитого дистального канальца моча поступает в соединительный каналец
, из него в
собирательную трубочку
и
собирательный проток
коркового вещества почек; 8-10 собирательных протоков соединяются в один большой проток (
собирательный проток коркового вещества
), который, опускаясь в мозговое вещество, становится
собирательным протоком мозгового вещества почек.
Постепенно сливаясь, эти протоки формируют
проток большого диаметра
, который открывается на вершине сосочка пирамиды в малую чашечку большой чашки лоханки.
Каждая почка имеет не менее 250 собирательных протоков большого диаметра, каждый из которых собирает мочу примерно от 4000 нефронов. Собирательные трубочки и собирательные протоки имеют специальные механизмы поддержания гиперосмолярности мозгового вещества почки, концентрирования и разбавления мочи и являются важными структурными компонентами образования конечной мочи.
Строение нефрона
Каждый нефрон начинается двустенной капсулой, внутри которой находится сосудистый клубочек. Сама капсула состоит из двух листков, между которыми расположена полость, переходящая в просвет проксимального канальца. Он состоит из проксимального извитого и проксимального прямого канальцев, составляющих проксимальный сегмент нефрона. Характерной особенностью клеток этого сегмента является наличие щеточной каемки, состоящей из микроворсинок, представляющих собой выросты цитоплазмы, окруженные мембраной. Следующий отдел — петля Генле, состоящий из тонкой нисходящей части, которая может глубоко спускаться в мозговое вещество, где она образует петлю и поворачивает на 180° в сторону коркового вещества в виде восходящей тонкой, переходящей в толстую, часть петли нефрона. Восходящий отдел петли поднимается до уровня своего клубочка, где начинается дистальный извитой каналец, который переходит в короткий связующий каналец, соединяющий нефрон с собирательными трубочками. Собирательные трубочки начинаются в корковом веществе почки, сливаясь, они образуют более крупные выводные протоки, которые проходят через мозговое вещество, и впадают в полость почечной чашки, которые в свою очередь, вливаются в почечную лоханку. По локализации различают несколько типов нефронов: поверхностные (суперфициальные), интракортикальные (внутри коркового слоя), юкстамедулярные (их клубочки расположены на границе коркового и мозгового слоев).
Рис. 2. Строение нефрона:
А — юкстамедуллярный нефрон; Б — интракортикальный нефрон; 1 — почечное тельце, включающее капсулу клубочка капилляров; 2 — проксимальный извитой каналец; 3 — проксимальный прямой каналец; 4 — нисходящее тонкое колено петли нефрона; 5 — восходящее тонкое колено петли нефрона; 6 — дистальный прямой каналец (толстое восходящее колено петли нефрона); 7 — плотное пятно дистального канальца; 8 — дистальный извитой каналец; 9 — связующий каналец; 10 — собирательная трубка коркового вещества почки; 11 — собирательная трубка наружного мозгового вещества; 12 — собирательная трубка внутреннего мозгового вещества
Различные типы нефронов отличаются не только по локализации, но и по величине клубочков, глубине их расположения, а также по длине отдельных участков нефрона, особенно петли Генле и по участию в осмотической концентрации мочи. В обычных условиях через почки проходит около 1/4 объема крови, выбрасываемого сердцем. В корковом веществе кровоток достигает 4-5 мл/мин на 1 г ткани, следовательно, это самый высокий уровень органного кровотока. Особенностью почечного кровотока является то, что кровоток почки остается постоянным при изменении в довольно широких пределах системного АД. Это обеспечивается специальными механизмами саморегуляции кровообращения в почке. Короткие почечные артерии отходят от аорты, в почке они разветвляются на более мелкие сосуды. В почечный клубочек входит приносящая (афферентная) артериола, которая в нем распадается на капилляры. Капилляры при слиянии образуют выносящую (эфферентную) артериолу, по которой осуществляется отток крови от клубочка. После отхождения от клубочка выносящая артериола вновь распадается на капилляры, образуя сеть вокруг проксимальных и дистальных извитых канальцев. Особенностью юкстамедулярного нефрона является то, что эфферентная артериола не распадается на околоканальцевую капиллярную сеть, а образует прямые сосуды, которые спускаются в мозговое вещество почки.
Типы Нефронов
Виды нефронов
По особенностям строения и функций выделяют два основных вида нефронов
: корковые (70-80%) и юкстамедуллярные (20-30%).
Корковые нефроны
подразделяют на суперфициальные, или поверхностные, корковые нефроны, в которых почечные тельца расположены в наружной части коркового вещества, и интракортикальные корковые нефроны, в которых почечные тельца располагаются в средней части коркового вещества почки. Корковые нефроны имеют короткую петлю Генле, проникающую только в наружную часть мозгового вещества. Основной функцией этих нефронов является образование первичной мочи.
Почечные тельца юкстамедуллярных нефронов
находятся в глубоких слоях коркового вещества на границе с мозговым слоем. Они имеют длинную петлю Генле, проникающую глубоко в мозговой слой, вплоть до вершин пирамид. Основное назначение юкстамедуллярных нефронов — создание в мозговом веществе почки высокого осмотического давления, необходимого для концентрирования и уменьшения объема конечной мочи.
Эффективное фильтрационное давление
- ЭФД = Р кап — Р бк — Р онк.
- Р кап
— гидростатическое давление в капилляре (50-70 мм рт. ст); - Р 6к
— гидростатическое давление в просвете капсулы Боумена — Шумлянекого (15-20 мм рт. ст.); - Р онк
— онкотичеекое давление в капилляре (25-30 мм рт. ст).
ЭФД = 70 — 30 — 20 = 20 мм рт. ст.
Образование конечной мочи является результатом трех главных процессов, происходящих в нефроне: , и секреции.
Почки
располагаются в забрюшинном пространстве поясничной области. Снаружи почка покрыта соединительнотканной капсулой. Почка состоит из коркового и мозгового вещества. Граница между этими частями неровная, так как структурные компоненты коркового вещества вдаются в мозговое в виде колонок, а мозговое вещество проникает в корковое, образуя мозговые лучи.
Основной структурно-функциональной единицей почки
является нефрон. Нефрон представляет собой эпителиальную трубочку, которая начинается слепо в виде капсулы почечного тельца, далее переходящей в канальцы разного калибра, впадающей в собирательную трубочку. В каждой почке имеется около 1-2 млн нефронов. Длина канальцев нефрона составляет 2-5 см, а общая длина всех канальцев в обеих почках достигает 100 км.
В нефроне
различают капсулу клубочка почечного тельца, проксимальный, тонкий и дистальный отделы.
Почечное тельце
состоит из клубочковой капиллярной сети и эпителиальной капсулы. В капсуле различают наружную и внутреннюю стенки (листки). Последняя вместе с эндотелиоцитами клубочковой капиллярной сети формирует гематонефридиальный гистион. Клубочек капиллярной сети расположен между приносящей и выносящей артериолами. Приносящая артериола чаще дает четыре разветвления, которые распадаются на 50-100 капилляров. Между ними имеются многочисленные анастомозы. Эндотелий капилляров клубочковой сети состоит из плоских эндотелиоцитов с многочисленными фенестрами в цитоплазме размером около 0,1 мкм. Фенестрированные (окончатые) эндотелиоциты представляют собой своеобразное сито. Снаружи от эндотелиоцитов располагается общая для эндотелия и эпителия внутренней стенки капсулы базальная мембрана, толщиной около 300 нм. Для нее характерно трехслойное строение.
Эпителий внутренней стенки
капсулы охватывает со всех сторон капилляры клубочковой сети. Состоит он из одного слоя клеток, называемых подоцитами. Подоциты имеют слегка вытянутую неправильную форму. Тело подоцита имеет 2-3 крупных длинных отростка, называемых цитотрабекулами. От них в свою очередь отходит много мелких отростков — цитоподий.
Цитоподии
представляют собой узкие цилиндрические образования (ножки) с утолщениями на конце, посредством которых они прикрепляются к базальной мембране. Между ними имеются щелевидные пространства размером 30-50 нм. Эти щели имеют определенное значение в процессах фильтрации при образовании первичной мочи. Между петлями капилляров клубочковой сети находится разновидность соединительной ткани (мезангии), содержащая волокнистые структуры и мезангиоциты.
Эпителий наружной стенки
капсулы клубочка состоит из одного слоя плоских эпителиоцитов. Между наружной и внутренней стенками капсулы имеется полость, в которую поступает первичная моча, образующаяся в результате клубочковой фильтрации.
Процесс фильтрации
является первым этапом мочеобразования. Фильтруются практически все компоненты плазмы крови, за исключением высокомолекулярных белков и форменных элементов крови. Жидкость из просвета капилляра проходит через фенестрированные эндотелиоциты, базальг ную мембрану и между цитоподиями подоцитов с их многочисленными фильтрационными щелями, прикрытыми диафрагмами, в полость капсулы клубочка. Гематонефридиаль-ный гистион проницаем для глюкозы, мочевины, мочевой кислоты, креатинина, хлоридов и низкомолекулярных белков. Эти вещества входят в состав ультрафильтрата — первичной мочи. Большое значение для эффективной фильтрации имеет разность диаметров приносящей и выносящей клубочковых артериол, что создает высокое фильтрационное давление (70-80 мм рт. ст.), а также большое количество капилляров (около 50-60) в составе клубочка. Во взрослом организме в течение суток образуется около 150-170 л первичного фильтрата (мочи).
Столь эффективная фильтрация плазмы
, осуществляемая почками практически беспрерывно, способствует максимальному удалению из организма вредных продуктов метаболизма — шлаков. Следующим этапом мочеобразования является обратное всасывание (реабсорбция) необходимых организму соединений (белков, глюкозы, электролитов, воды) из первичного фильтрата с образованием окончательной мочи. Процесс реабсорбции происходит в канальцах нефрона.
В проксимальном отделе нефрона
различают извитую и прямую части канальца. Это самый протяженный участок канальцев (около 14 мм). Диаметр проксимального извитого канальца составляет 50-60 мкм. Здесь происходит облигатная реабсорбция органических соединений по типу рецепторно-опосредованного эндоцитоза с участием энергии митохондрий. Стенка проксимального канальца состоит из однослойного кубического микроворсинчатого эпителия. На апикальной поверхности эпителиоцитов находятся многочисленные микроворсинки длиной 1-3 мкм (щеточная каемка). Число микроворсинок на поверхности одной клетки достигает 6500, что увеличивает активную всасывающую поверхность каждой клетки в 40 раз. В плазмолемме эпителиоцитов между микроворсинками имеются углубления с адсорбированными макромолекулами белков, из которых формируются транспортные пузырьки.
Общая поверхность
микроворсинок во всех нефронах составляет 40-50 м2. Второй характерной особенностью строения клеток эпителия проксимального канальца является базальная исчерченность эпителиоцитов, образованная глубокими складками плазмолеммы и закономерным расположением между ними многочисленных митохондрий (базальный лабиринт). Плазмолемма эпителиоцитов базального лабиринта обладает свойством транспорта натрия из первичной мочи в межклеточное пространство.
Структурно-функциональной единицей почки является нефрон, состоящий из сосудистого клубочка, его капсулы (почечное тельце) и системы канальцев, ведущих в собирательные трубки (рис.3). Последние морфологически не относятся к нефрону.
Рисунок 3. Схема строения нефрона (8).
В каждой почке человека имеется около 1 млн. нефронов, с возрастом их количество постепенно уменьшается. Клубочки расположены в корковом слое почки, из них 1/10-1/15 часть находятся на границе с мозговым слоем и называются юкстамедуллярными. Они имеют длинные петли Генле, углубляющиеся в мозговое вещество и способствующие более эффективной концентрации первичной мочи. У детей грудного возраста клубочки имеют малый диаметр и их общая фильтрующая поверхность значительно меньше, чем у взрослых.
Строение почечного клубочка
Клубочек покрыт висцеральным эпителием (подоцитами), который у сосудистого полюса клубочка переходит в париетальный эпителий капсулы Боумена. Боуменово (мочевое) пространство непосредственно переходит в просвет проксимального извитого канальца. Кровь поступает в сосудистый полюс клубочка через афферентную (приносящую) артериолу и, после прохождения по петлям капилляров клубочка, покидает его по эфферентной (выносящей) артериоле, имеющей меньший просвет. Сжатие выносящей артериолы увеличивает гидростатическое давление в клубочке, что способствует фильтрации. Внутри клубочка афферентная артериола подразделяется на несколько ветвей, которые в свою очередь дают начало капиллярам нескольких долек (рис. 4А). В клубочке имеется около 50 капиллярных петель, между которыми были найдены анастомозы, позволяющие функционировать клубочку как «диализирующая система». Стенка капилляра клубочка представляет собой тройной фильтр, включающий фенестрированный эндотелий, гломерулярную базальную мембрану и щелевые диафрагмы между ножками подоцитов (рис.4Б).
Рисунок 4. Строение клубочка (9).
А – клубочек, АА – афферентная артериола (электронная микроскопия).
Б – схема строения капиллярной петли клубочка.
Прохождение молекул через фильтрационный барьер зависит от их размера и электрического заряда. Вещества с молекулярным весом >50.000 Да почти не фильтруются. Из-за отрицательного заряда в нормальных структурах клубочкового барьера анионы задерживаются в большей степени, чем катионы. Эндотелиальные клетки
имеют поры или фенестры диаметром около 70 нм. Поры окружены гликопротеидами, имеющими отрицательный заряд, представляют своеобразное сито, через которые происходит ультрафильтрация плазмы, но задерживаются форменные элементы крови.
Гломерулярная базальная мембрана
(ГБМ) представляет непрерывный барьер между кровью и полостью капсулы, и у взрослого человека имеет толщину 300-390 нм (у детей тоньше – 150-250 нм) (рис. 5). ГБМ так же содержит большое количество отрицательно заряженных гликопротеидов. Она состоит из трех слоев: а) lamina rara externa; б) lamina densa и в) lamina rara interna. Важной структурной частью ГБМ является коллаген IV типа. У детей с наследственным нефритом, клинически проявляющимся гематурией, выявляются мутации коллагена IV типа. Патология ГБМ устанавливается электронно-микроскопическим исследованием биоптата почек.
Рисунок 5. Стенка капилляра клубочка – гломерулярный фильтр (9).
Снизу расположен фенестрированный эндотелий, над ним – ГБМ, на которой отчетливо видны регулярно расположенные ножки подоцитов (электронная микроскопия).
Висцеральные эпителиальные клетки клубочка
, подоциты, поддерживают архитектуру клубочка, препятствуют прохождению белка в мочевое пространство, а также синтезируют ГБМ. Это высокоспециализированные клетки мезенхимального происхождения. От тела подоцитов отходят длинные первичные отростки (трабекулы), концы которых имеют «ножки», прикрепленные к ГБМ. Малые отростки (педикулы) отходят от больших почти перпендикулярно и закрывают собой свободное от больших отростков пространство капилляра (рис. 6А). Между соседними ножками подоцитов натянута фильтрационная мембрана – щелевая диафрагма, которая в последние десятилетия представляет собой предмет многочисленных исследований (рис. 6Б).
Рисунок 6. Строение подоцита (9).
А – ножки подоцитов полностью покрывают ГБМ (электронная микроскопия).
Б – схема фильтрационного барьера.
Щелевые диафрагмы состоят из белка нефрина, который тесно связан в структурном и функциональном отношениях со множеством других белковых молекул: подоцином, СД2АР, альфа-актинином-4 и др. В настоящее время установлены мутации генов, кодирующих белки подоцитов. Например, дефекта гена NРНS1 приводит к отсутствию нефрина, что имеет место при врожденном нефротическом синдроме финского типа. Повреждения подоцитов вследствие воздействия вирусных инфекций, токсинов, иммунологических факторов, а также генетических мутаций могут привести к протеинурии и развитию нефротического синдрома, морфологическим эквивалентом которого независимо от причины является расплавление ножек подоцитов. Наиболее частым вариантом нефротического синдрома у детей является идиопатический нефротический синдром с минимальными изменениями.
В состав клубочка входят так же мезангиальные клетки, основная функция которых – обеспечение механической фиксации капиллярных петель. Мезангиальные клетки обладают сократительной способностью, влияя на клубочковый кровоток, а так же фагоцитарной активностью (Рис. 4Б).
Почечные канальцы
Первичная моча попадает в проксимальные почечные канальцы и подвергается там качественным и количественным изменениям за счет секреции и реабсорбции веществ. Проксимальные канальцы
– самый длинный сегмент нефрона, в начале он сильно изогнут, а при переходе в петлю Генле выпрямляется. Клетки проксимального канальца (продолжение париетального эпителия капсулы клубочка) цилиндрической формы, со стороны просвета покрыты микроворсинками («щеточная кайма”). Микроворсинки увеличивают рабочую поверхность эпителиальных клеток, обладающих высокой энзиматической активностью. Они содержат много митохондрий, рибосом и лизосом. Здесь происходит активная реабсорбция многих веществ (глюкозы, аминокислот, ионов натрия, калия, кальция и фосфатов). В проксимальные канальцы поступает примерно 180 л клубочкового ультрафильтрата, а 65-80% воды и натрия реабсорбируется обратно. Таким образом, в результате этого значительно уменьшается объем первичной мочи без изменения ее концентрации.
Петля Генле.
Прямая часть проксимального канальца, переходит в нисходящее колено петли Генле. Форма эпителиальных клеток становится менее вытянутой, уменьшается число микроворсинок. Восходящий отдел петли имеет тонкую и толстую части и заканчивается в плотном пятне. Клетки стенок толстых сегментов петли Генле крупные, содержат много митохондрий, которые генерируют энергию для активного транспорта ионов натрия и хлора. Основной ионный переносчик этих клеток – NKCC2 ингибируется фуросемидом.
Юкстагломерулярный аппарат (ЮГА)
включает 3 типа клеток: клетки дистального канальцевого эпителия на примыкающей к клубочку стороне (плотное пятно), экстрагломеруллярные мезангиальные клетки и гранулярные клетки в стенках афферентных артериол, продуцирующие ренин. (Рис. 7).
Дистальный каналец.
За плотным пятном (macula densa) начинается дистальный каналец, переходящий в собирательную трубку. В дистальных канальцах всасывается около 5% Na первичной мочи. Переносчик ингибируется диуретиками из группы тиазидов.
Собирательные трубки
имеют три отдела: кортикальный, наружный и внутренний медуллярный. Внутренние медуллярные участки собирательной трубки впадают в сосочковый проток, открывающийся в малую чашечку. Собирательные трубки содержат два типа клеток: основные («светлые») и вставочные («темные»). По мере перехода кортикального отдела трубки в медуллярный уменьшается число вставочных клеток. Основные клетки содержат натриевые каналы, работа которых ингибируется диуретиками амилоридом, триамтереном. Во вставочных клетках нет Na + /K + -АТФазы, но содержатся Н + -АТФаза. В них осуществляется секреция Н + и реабсорбция Сl — . Таким образом, в собирательных трубках осуществляется конечный этап обратного всасывания NaCl перед выходом мочи из почек.
Интерстициальные клетки почек.
В корковом слое почек интерстиций выражен слабо, тогда как в мозговом слое он более заметен. Корковое вещество почек содержит два типа интерстициальных клеток – фагоцитирующие и фибробластоподобные. Фибробластоподобные интерстициальные клетки продуцируют эритропоэтин. В мозговом веществе почек имеется три типа клеток. В цитоплазме клеток одного из этих типов содержатся мелкие липидные клетки, служащие исходным материалом для синтеза простагландинов.
Нефрон: его строение, функциональное значение
Нефрон представляет собой оболочку для небольшого клубка, которая состоит из двух стенок и закрывает собой небольшой клубок капилляров. Внутренняя часть этой оболочки покрыта эпителием, особые клетки которого помогают добиться дополнительной защиты. То пространство, которое образуется между двумя слоями, может трансформироваться в небольшое отверстие и канал.
Этот канал обладает щеточной кромкой из небольших ворсинок, сразу за ним начинается очень узкий участок петли оболочки, который спускается вниз. Стенка участка состоит из плоских и маленьких клеток эпителия. В некоторых случаях отсек петли достигает глубины мозгового вещества, а затем разворачивается к корке почечных образований, которые плавно перерастают в еще один сегмент нефроновой петли.
Подоциты в нефроне
Отростки подоцитов отделены друг от друга щитовыми мембранами, от которых зависит сам нефрон, строение структурного элемента почки и ее работоспособность. Благодаря именно им определяются размеры веществ, которые необходимо отфильтровать. Эпителиальные клетки обладают небольшими отростками, за счет которых они соединяются с базальной мембраной.
Строение и функции нефрона таковы, что в совокупности все его элементы не пропускают молекулы диаметром более 6 нм и производят фильтрацию меньших по размерам молекул, которые должны быть выведены из организма. Белок не может пройти сквозь имеющийся фильтр благодаря особым элементам мембраны и молекулам с негативным зарядом.
Из чего состоит нефрон
Каждый нефрон покрыт небольшой капсулой, которая похожа на двустенную чашу (капсула Шумлянского – Боумена, названа в честь русского и английского ученых, которые ее открыли и изучили). Внутренняя стенка этой капсулы является фильтром, который постоянно очищает нашу кровь.
Строение нефрона
Состоит этот фильтр из базальной мембраны и 2 слоев покровных (эпителиальных) клеток. В этой мембране тоже 2 слоя покровных клеток, причем наружный слой – это клетки сосудов, а внешний – клетки мочевого пространства.
Все эти слои имеют внутри себя специальные поры. Начиная от внешних слоев базальной мембраны, диаметр этих пор уменьшается. Так и создается фильтрующий аппарат.
Между ее стенками возникает щелевидное пространство, именно оттуда берут свое начало почечные канальцы. Внутри капсулы находится капиллярный клубочек, он образуется из-за многочисленных ветвлений почечной артерии.
Капиллярный клубочек называют еще мальпигиевым тельцем. Открыл их итальянский ученый М. Мальпиги в 17 веке. Погружен он в гелеобразное вещество, которое выделяется специальными клетками – мезаглиоцитами. А самое вещество именуется, как мезангий.
Это вещество защищает капилляры от непреднамеренных разрывов из-за высокого давления внутри них. А если все-таки произошло повреждение, то в гелеобразном веществе находятся необходимые материалы, которые заделают эти повреждения.
От токсических веществ микроорганизмов также защитит вещество, выделяемое мезаглиоцитами. Оно просто их сразу же уничтожит. Более того этими специфичными клетками вырабатывается особый почечный гормон.
Каналец, выходящий из капсулы, именуется извитым канальцем I порядка. Он правда не ровный, а извитой. Проходя по мозговому слою почки, этот каналец формирует петлю Генле и вновь поворачивается в сторону коркового слоя. На своем пути извитой каналец делает несколько витков и в обязательном порядке соприкасается с основанием клубочка.
В корковом слое образуется каналец II порядка, он вливается в собирательную трубочку. Небольшое количество собирательных трубочек, соединяясь вместе, объединяются в выводные протоки, переходящие в почечную лоханку. Именно эти трубочки, двигаясь к мозговому веществу, формируют мозговые лучи.
Функции
В зависимости от типа, нефроны почек выполняют следующие функции:
- фильтрация;
- обратное всасывание;
- секреция.
Первая стадия характеризуется выработкой первичной мочевины, которая далее очищается при реабсорбции. На этом же этапе всасываются полезные вещества, микро- и макроэлементы, вода. Последняя стадия формирования урины представлена канальцевой секрецией — образуется вторичная моча. С ней выводятся вещества, которые не нужны организму.
Структурно-функциональной единицей почки являются нефроны, которые:
- поддерживают водно-солевой и электролитный баланс;
- регулируют насыщенность мочи биологически активными компонентами;
- поддерживают кислотно-щелочной баланс (pH);
- контролируют давление крови;
- выводят продукты метаболизма и другие вредные вещества;
- участвуют в процессе глюконеогенеза (получение глюкозы из соединений неуглеводного типа);
- провоцируют секрецию некоторых гормонов (например, регулирующих тонус стенок сосудов).
Процессы, происходящие в нефроне человека, позволяют оценить состояние органов выделительной системы. Это можно сделать двумя способами. Первый — вычисление содержания креатинина (продукта распада белка) в крови. Данный показатель характеризует, насколько единицы почек справляются с функцией фильтрации.
Работа нефрона также может быть оценена с помощью второго показателя — скорости клубочковой фильтрации. Плазма крови и первичная моча в норме должны фильтроваться со скоростью 80-120 мл/мин. Для людей в возрасте нормой может быть нижняя граница, поскольку после 40 лет клетки почек погибают (клубочков становится значительно меньше, и органу сложнее полноценно проводить фильтрацию жидкостей).
Функции некоторых составляющих клубочкового фильтра
Клубочковый фильтр состоит из фенестрированного эндотелия капилляра, базальной мембраны и подоцитов. Между этими структурами располагается мезангиальный матрикс. Первый слой выполняет функцию грубой фильтрации, второй — отсеивает белки, а третий очищает плазму от мелких молекул ненужных веществ. Мембрана имеет отрицательный заряд, поэтому через нее не проникают альбумины.
Фильтруется плазма крови в клубочках, а поддерживают их работу мезангиоциты — клетки мезангиального матрикса. Эти структуры выполняют сократительную и регенеративную функцию. Мезангиоциты восстанавливают базальную мембрану и подоциты, а также, подобно макрофагам, они поглощают отмершие клетки.
Если каждая единица делает свою работу, почки функционируют, как слаженный механизм, а образование мочи проходит без возврата в организм отравляющих веществ. Это и предотвращает накопление токсинов, появление отечности, повышенного давления и другой симптоматики.
Нарушения функций нефрона и их профилактика
В случае нарушения работы функциональных и структурных единиц почек происходят изменения, отражающиеся на работе всех органов — нарушается водно-солевое равновесие, кислотность и обмен веществ. Перестает нормально функционировать ЖКТ, из-за интоксикации могут проявляться аллергические реакции. Также повышается нагрузка на печень, так как этот орган напрямую связан с выведением токсинов.
Похожая статья — Центр флебологии москва отзывы
Для заболеваний, связанных с транспортной дисфункцией канальцев, существует единое название – тубулопатии. Они бывают двух видов:
Первый тип — это врожденные патологии, второй — приобретенная дисфункция.
Активная гибель нефронов начинается при приеме лекарств, в побочных эффектах которых указаны возможные заболевания почек. Нефротоксическое действие имеют некоторые препараты из следующих групп: нестероидные противовоспалительные средства, антибиотики, иммуносупрессоры, противоопухолевые и др.
Тубулопатии подразделяются на несколько видов (по месту расположения):
При полной или частичной дисфункции проксимальных канальцев может наблюдаться фосфатурия, почечный ацидоз, гипераминоацидурия и глюкозурия. Нарушенная реабсорбция фосфатов приводит к разрушению костной ткани, которая не восстанавливается при терапии с применением витамина D. Гиперацидурия характеризуется нарушением транспортной функции аминокислот, что приводит к различным заболеваниям (зависит от типа аминокислоты).
Подобные состояния требуют незамедлительной помощи медиков, так же как и дистальные тубулопатии:
- почечный водный диабет;
- канальцевый ацидоз;
- псевдогипоальдостеронизм.
Нарушения бывают комбинированными. При развитии сложных патологий может одновременно уменьшаться всасывание аминокислот с глюкозой и реабсорбция бикарбонатов с фосфатами. Соответственно, проявляются следующие симптомы: ацидоз, остеопороз и другие патологии костной ткани.
Предотвращают появление дисфункции почек правильный режим питания, употребление достаточного количества чистой воды и активный образ жизни. Необходимо вовремя обращаться к специалисту в случае возникновения симптомов нарушения работы почек (для профилактики перехода острой формы заболевания в хроническую).
Не рекомендуется принимать препараты (в особенности рецептурного отпуска с нефротоксическим побочным действием) без назначения врача — они также могут нарушить функции мочевыделительной системы.
Почечной единицей называют нефрон. Он отвечает за фильтрацию крови и формирование первичной мочи. Функциональная единица почки осуществляет выведение токсинов и продуктов метаболизма из организма. Нефроны работают круглосуточно, фильтруя до 1,7 тысяч литров плазмы крови. При этом образуется чуть больше литра выводимой мочи. Первичной мочи при этом за сутки образуется около 170 л. Впоследствии этот объём сгущается до суточной нормы урины. В наших почках находится около 2 миллионов нефронов. Если подсчитать общую площадь поверхности нефронов, осуществляющей выделительную функцию, то она будет равна примерно 8 м². Это в три раза больше площади кожных покровов.
Секции почки и нефроны
Нефрон, строение которого доподлинно стало известно ученым только после целого ряда опытов, находится в каждом из структурных элементов важнейших для организма органов – почек. Специфика функций почек такова, что она требует существования сразу нескольких секций структурных элементов: тонкого сегмента петли, дистального и проксимального.
Все каналы нефрона соприкасаются с уложенными накопительными трубками. По мере развития эмбриона они произвольно совершенствуются, однако в уже сформировавшемся органе по своим функциям напоминают дистальный участок нефрона. Подробный процесс развития нефрона ученые неоднократно воспроизводили в своих лабораториях на протяжении нескольких лет, однако подлинные данные были получены лишь в конце XX века.